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COMMENT 

Empirical phase boundaries for site-bond percolation 

R L Holtzt 
Naval Research Laboratory, Washington, DC 20375, USA 

Received 29 October 1987 

Abstract. The expression bs“ =constant is proposed as a suitable and possibly correct 
description of site-bond percolation phase boundaries. Bond thresholds, b, as a function 
of site thresholds, s, for this model agree with published numerical results to better than 
1 2 % .  The exponent x and the constant are determined solely by the site-only and bond-only 
thresholds, s, and b,, so that the model may be applied to any percolation problem for 
which these are known. 

Site-bond percolation has been studied primarily by two methods (to be reviewed later 
in this comment). Real-space renormalisation group and related methods are qualita- 
tively useful, but typically do not produce accurate site or bond percolation thresholds, 
and sometimes are tricky to do properly. Numerical methods such as series expansions 
and Monte Carlo simulations are generally quite accurate, but require a considerable 
amount of computation. None of these approaches are convenient for the non-specialist 
to use, nor are results available in the literature for all lattices that might be of interest. 
For calculations using site-bond percolation as a model, it is desirable to have a 
relatively simple functional form for the phase boundary. Ideally, any description 
should also be applicable to general site-bond percolation problems with only a change 
of a few parameters. This comment describes an expression, developed empirically, 
that meets these criteria. 

Consider a network of sites connected by bonds, for example on a two-dimensional 
square lattice. A site (or bond) is considered to be conducting if it is ‘occupied’. If 
sites are randomly occupied with probability s, and all bonds are occupied, the network 
is conducting when s is greater than s,, the site percolation threshold. If the bonds 
are randomly occupied and all sites are occupied, bond percolation occurs with 
threshold b,. For site-bond percolation, both sites and bonds are independently 
randomly occupied. 

The critical curve (phase boundary) for the site-bond problem can be defined as 
a function b = b ( s ) ,  which specifies the bond threshold for a particular site occupancy. 
Such a curve is shown in figure 1, which depicts a phase diagram for site-bond 
percolation on the simple cubic lattice as an example. The phase boundary is approxi- 
mately hyperbolic, and has a similar appearance for all two-dimensional lattices in 
addition to the simple cubic lattice. As defined earlier, bond percolation occurs for 
s = 1, b = b,, and site percolation for b = 1, s = s,, so that the critical curve must satisfy 
the conditions b( 1) = b, and b ( s , )  = 1. The objective is to find an expression b = b ( s )  
that satisfies these requirements and agrees with critical curves produced by other 
methods. 
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Figure 1. Schematic phase diagram for site-bond percolation on the 3D simple cubic lattice. 
The site-only and bond-only thresholds are labelled s, and b,. The conducting region is 
marked C, and the insulating region is marked I. 

In searching for a general form for the critical curve, it was found that log-log 
plots of these curves are linear or nearly linear in all cases for which data could be 
extracted from the literature. Figure 2 ,  a linear plot of -In b against -In s demonstrates 
this fact for several examples. For the purpose of maintaining clarity, not all of the 
data available for the lattices shown are included in the figure. Data for the triangular 
lattice (TR) were calculated with a precision of 2% from the real-space renormalisation 
equations given by Guttmann and Whittington [l]. For this case, -In b against -In s 
is linear within 5 % .  The square lattice data (SQ) were obtained by digitising graphical 
results given by Agrawal et a1 [ 2 ]  based on a series expansion study. This example is 
linear within 2%, which was the accuracy of the digitisation process used. Chang and 
Odagaki [3] provide a polynomial fit to their Monte Carlo simulation of the simple 

- Ins  

Figure 2. Logarithmic plot of the site-bond phase boundaries derived from several 
published sources: 2D triangular lattice (TR) from [ I ] ,  2D square lattice (SQ) from [2] and 
3D simple cubic lattice ( sc)  from [3]. 



Empirical phase boundaries 1305 

cubic lattice, which was used to generate curve sc in figure 2 .  The linearity is better 
than 1% for this case. 

Real-space renormalisation results are available for the square lattice [ 1,4] that 
are not included in figure 2 ,  but which have the same degree of linearity as the data 
displayed for the triangular lattice. Kondor [SI gives results for the honeycomb and 
triangular lattices derived from a 'star-triangle transformation'. Deviations from 
linearity are much larger (10-15%) for this method, even though the site-only and 
bond-only thresholds obtained apparently are exactly correct for the triangular lattice. 
Other numerical results for the square lattice [3] and the simple cubic lattice [ 6 ]  show 
very good (1-2'/0 ) linearity in In b against In s. 

The evidence cited above is overwhelming that a linear relationship between In b 
and Ins  is correct, or at least a very good approximation, for the site-bond phase 
boundary. The critical curve therefore may be expressed empirically as 

bs" = constant ( 1 )  

or as 

In b + x In s = constant. (2) 

The exponent and constant are determined by the requirement that (1) produces the 
correct site-only (s = s,, b = 1) and bond-only (s = 1, b = b,) thresholds. The model for 
the site-bond percolation phase boundary is given by 

bs" = 6,  (3) 

x = In b,/ln s,. (4) 

Values of the parameters s,, b, ,  and x are listed in table 1 for a number of two- and 
three-dimensional lattices [7-lo]. 

As stated earlier, numerical studies give more accurate results for the site and bond 
thresholds than do renormalisation schemes, so are likely to be of similar accuracy 
for other points along the critical curve. For this reason (3) is compared with the 

Table 1. Parameters used with bs' = b, (3)  to describe site-bond percolation phase 
boundaries. 

Latticea sc b, X 

2D H C  0.692b 0.6527' 1.178 
SQ 0.592Sd 0.5000' 1.326 
TR 0.50OOc 0.3473' 1.526 

3D DIA 0.4299e 0.3886 1.120 
sc 0.31 19 0.2479 1.196 
BCC 0.2464 0.1795 1.226 
FCC 0.1998 0.1198 1.318 

a HC,  honeycomb; SQ, square; TR, triangular, DIA,  diamond; sc, simple cubic, BCC, body 
centred cubic; FCC, face-centred cubic. 

From [7]. 
Exact values from [SI. 
From [9]. 

e All 3D thresholds from [lo]. 
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available numerical data only, since this can be expected to give a better indication 
of the accuracy of the model. Figure 3 ( a )  shows the relative difference between data 
derived from the literature and the model for the square lattice. Curve A is the data 
extracted from Agrawal er a1 [2] that was used in figure 2, and curve B was obtained 
from the fit to Monte Carlo results given by Chang and Odagaki [3]. The model uses 
the parameters from table 1 with equation (3). In both cases, the model agrees with 
the literature results within 1% over most of the range of s. The deviations are larger 
at low s, near sc, because the site thresholds calculated by Agrawal et a1 (s, = 0.595) 
and by Chang and Odagaki (0.586) differ slightly from the value used for the model 
(0.5928). If their thresholds are used in the model, the fit is much better, with deviations 
of less than 1% that are primarily due to scatter in the derived data. The same situation 
is apparent in figure 3 ( b )  for the simple cubic lattice. Curve C is the same data used 
in figure 2 from Chang and Odagaki, and curve D was taken from Heermann and 
Stauffer [6] by digitising their figures. As in the case of the square lattice, deviations 
generally are within 1% for most values of s and are larger near s,. Agreement is 
improved by using thresholds from these sources instead of those from the table. 

It should be emphasised that the model discussed above was developed empirically, 
and no theoretical or mathematical justification for it is offered here. The excellent 
quantitative agreement with numerical methods for the square and simple cubic lattices 
is a very strong indication that the model is correct for at least these two lattices. 
Numerical results for the other two- and three-dimensional lattices were not found, 
but the model still is in reasonable agreement with the renormalisation methods. 

A (speculative) plausibility argument can be offered in support of the validity of 
the model. As far as threshold behaviour is concerned, only two parameters describe 
any particular regular lattice: the site coordination, z, and the spatial dimension, d. 
The thresholds s, and b, will be determined by z and d, so the thresholds may be 
taken as the two necessary parameters. If  only two independent parameters are 
available, the critical curve should be describable by only two independent parameters. 
In other words, it should be universal in the sense that it should depend only on s, 
and b,, or, ultimately, on z and d. If the form is correct for one lattice, it should be 
correct for all lattices. Equation (3) would seem to be this universal form for the 
site-bond percolation phase boundary. 
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Figure 3. Comparison of the phase boundary model ( 3 )  and numerical results available 
in published literature for the 2~ square lattice ( a )  and 3 1 3  simple cubic lattice ( 6 ) .  The 
quantity ( b -  b m ) / b m  is the relative difference in bond threshold between the literature 
results and the model. Curves B and C were derived from [3], and curves A and D from 
[2] and [6] respectively. 
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